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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS

X. REINFORCEMENT BY INEXTENSIBLE CORDS

By J. E. ADKINS anp R. S. RIVLIN*
British Rubber Producers’ Research Association, Welwyn Garden City, Herts.

(Communicated by Sir Eric Rideal, F.R.S.—Received 15 February 1955)
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The theory of large elastic deformations of incompressible, isotropic materials developed in
previous papers of this series is employed to examine some simple deformations of elastic bodies
reinforced with cords. The cords are assumed to be thin, flexible and inextensible, and to lie
parallel and close together in smooth surfaces in the undeformed body, which is thus divided into
sections by boundary surfaces which are inextensible in certain directions. In the simple problems
considered, the cords impose relationships upon the parameters which specify the deformation.

The following examples are examined from this point of view:

(i) the pure homogeneous strain of a thin uniform sheet containing a double layer of cords lying
in a plane midway between its major surfaces;

(ii) the combined pure homogeneous strain and flexure of a cuboid containing a double layer
of cords lying in a plane parallel to a pair of opposite faces, the two sets of cords being unsym-
metrically disposed in this plane with respect to the remaining faces of the cuboid, and the
symmetrical case being obtained from this by a suitable choice of constants;

(iii) the combined extension and flexure of a thin rectangular sheet with two sets of cords placed
symmetrically in a plane parallel to its major surfaces, the problem being considered as a limiting
case of (ii); . .

(iv) the simultaneous extension, inflation and torsion of a cylindrical tube containing one or two
sets of cords lying in helical paths concentric with the axis of the cylinder.

In all cases, relations are obtained for the determination of the tensions in the cords in terms of
the applied forces and the parameters which define the deformation.

* Now at Brown University, U.S.A.
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202 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

1. INTRODUCTION

In many applications of rubber-like materials, reinforcement is provided by the introduction
of layers of cords which have a much higher modulus of elasticity than that of the surrounding
material. Such reinforcement forms a feature, for example, of the construction of such
common articles as pneumatic tyres and fire hose, in which it is necessary to restrict the
magnitude of deformation in certain directions and to give added strength to the composite
body.

In previous papers of this series, a theory of large elastic deformation has been developed
byRivlin (1948 a, b, 1949 a, 5) which is applicable to unreinforced ideal rubber-like materials,
for which it is possible to introduce the assumptions of isotropy and incompressibility. The
elastic properties of such materials may be expressed in terms of a strain-energy function W
which is a function of two invariants of strain J; and 1, defined by

3 3
11=2/1z23 12=2/1i—2>
i=1 i=1

A; being the principal extension ratios at any point of the deformed body. Employing the
results of this theory, the form of W for a natural rubber vulcanizate has been investigated
experimentally by Rivlin & Saunders (1951).

The assumption of incompressibility imposes a constraint upon the deformation wh1ch
makes possible the solution of a number of problems without any restriction either upon the
form of strain-energy function or upon the magnitude of the deformation. Owing to the
non-linearity of the equations which must be employed, however, the successful treatment
of such problems has depended upon the imposition of a general restriction upon the form of
the deformation, so that, in the subsequent analysis, partial differential equations can be
avoided. By employing the linear form of strain-energy function postulated by Mooney
(1940) solutions of somewhat more general problems have been obtained (Rivlin 19494;
Adkins 1954, 1955), but even with this limitation on the form of W the difficulties inherent
in the treatment of non-linear partial differential equations, in general, remain.

When the elastic material is reinforced with sets of cords, further assumptions must be
made in order to examine the deformation of the composite body. In the present paper we
assume the cords to be thin, flexible and inextensible, and to lie parallel and close together
in smooth surfaces in the undeformed body. The cords thus introduce into the elastic body
thin, flexible surfaces which are inextensible in certain directions. Each layer may then be
regarded as a boundary surface for the elastic material on either side, and the elastic problem
for each section of the material into which the body is divided by the cords considered
separately. For each such region, the difficulties inherent in the consideration of large
deformations of unreinforced materials again arise, and attention is therefore confined to
problems of the type already solved for such materials. The equilibrium of each layer of
cords under the action of the forces due to the adjoining elastic material may be considered
by the usual methods employed for thin shells. This approach has already been employed
by Adkins (1951) in considering reinforced cylindrical tubes and thin sheets, and the
present paper includes a more general treatment of these problems.

The simplest problem, considered in §§2 and 3, is that of the homogeneous deformation
of a uniform thin plane sheet of elastic material, which is reinforced by means of a single
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layer containing two sets of straight cords, the cords of each set being parallel to each other
and intersecting those of the other set at a constant angle. It follows from geometrical
considerations that the principal directions of strain bisect the angles between the cords,
the presence of which implies a relationship between the principal extension ratios additional
to that already resulting from the incompressibility condition. If the deformation is pro-
duced by means of simple tensile forces uniformly distributed along a pair of opposite edges
in a direction bisecting the angle between the cords, it is possible for the tensions in the
individual cords to become negative at a critical value of the extension ratio which depends
upon the angle which the cords make with the direction of the force. This would suggest that
the equilibrium then becomes unstable, but this aspect is not considered in the present paper.

The flexure of a cuboid containing a similar double layer of cords placed in a plane of
flexure is examined in §§4 to 8. It is assumed initially that the cords are placed unsym-
metrically with respect to the axis of flexure, and that a pure homogeneous deformation
with two of its principal directions bisecting the angles between the cords is applied prior
to flexure, the results obtained by Rivlin (19494,%) for an unreinforced cuboid being
generalized to include this unsymmetrical case. The symmetrical case is considered in §8,
and the results thus obtained employed to examine the flexure of a uniform thin plane sheet,
considered as the limiting case of a cuboid, in §9. By this means it is possible to infer that
when the plane of the cords does not lie exactly midway between the major surfaces of the
undeformed sheet, a simple tensile force is sufficient to produce flexure, in addition to
extending the sheet in the direction of the force. The axis of the flexure is parallel to the
direction of the applied force, but the sense in which the bending occurs depends upon the
angle between the cords and the magnitude of the extension. The relationship which must
hold between these quantities for zero flexure is identical with that obtained in §3 for the
cords to be unstressed in the case of simple extension.

The simultaneous extension, inflation and torsion of a reinforced cylindrical tube of
material is examined in the final sections of the paper. The cords are assumed to take the
form of helices lying in cylindrical surfaces co-axial with the boundaries of the elastic
cylinder, and the geometrical constraints which are thus imposed ensure that a continuous
deformation of this type is only possible if there are not more than two such independent
sets of cords. When the two sets of cords are symmetrically disposed in the same layer and
the tube extended by means of a simple longitudinal force alone, it is possible for the tensions
in the cords to become negative, the relationship between the critical extension ratio at
which this occurs and the angle between the cords again being identical with that obtained
in §3 for the case of simple extension.

PURE HOMOGENEOUS DEFORMATION OF A THIN SHEET

2. THE GENERAL CASE

We shall suppose the undeformed body to be a thin plane sheet of highly elastic, isotropic,
incompressible material, bounded in the rectangular Cartesian co-ordinate system (x, y, z)
by the planes z = 4-}4. This sheet is reinforced by means of two sets of thin, straight in-
extensible cords lying in the plane z = 0, the cords of each set being parallel to each other
and intersecting those of the other set at a constant angle.

. 26-2
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The sheet is subjected to a pure homogeneous strain with principal extension ratios
A1, A5, A5 in the directions x, y, z respectively. From geometrical considerations it is readily
seen that this deformation is possible only if the cords are placed symmetrically with respect
to the axes, so that the principal directions of strain bisect the angles between them. Thus,
if an element of length ds in the undeformed sheet with direction cosines (/,m,n) attains
a length ds’ after deformation we have

ds’\? 2212 A2m2 - A2 n2
(a) = A{l5+Agm*+ A3n®. (21)
If the cords lie in the directions (/;, s 0) and (/,, m,, 0) so that ds’/ds = 1 in these directions,

we obtaln from (2-1)
MBB4+ms =1, AB+Am3=

and since l%+m% = B+mi=1,
these relations yield B=103=(1-23)/22—-13),
or Iy = :st my = d=my,

which is the required condition of symmetry.
If the cords of each set are inclined at angles +a, +f to the x-axis before and after
deformation respectively, we have

cosf = A,cosa, sinf = A sina, (2-2)
and A}cos?a+A3sin?a = 1. (2-3)

Since, for an incompressible material,
A g5 =1, (2+4)

itis evident that any one of the quantities A;, 15, 5 or £ is sufficient to specify the deformation
completely. The strain invariants /,, I, defined in § 1 are not therefore independent, and the
strain-energy function W could be considered as a function of a single invariant. A similar
result has been obtained in other instances where the deformation is subject to a general
constraint by Adkins, Green & Shield (1953) and by Adkins (1954), but no great simplifica-
tion results from this consideration in the present instance.

We shall now suppose the deformation to be produced by a system of forces acting in the
plane of the sheet and applied uniformly around its edges so that the stress resultants acting
at any point of the sheet are

(i) T3, ), in the positive directions of x, y respectively across a line parallel to the y-axis, and

(i) Ty, S, in the positive directions of y, x respectively across a line parallel to the x-axis,
asshown in figure 1, these forces being measured per unitlength of edge of the deformed sheet.

We may consider the elastic material and the system of cords separately and write

T =Ti+T1, T,=T,+T3, (2-5)

where (77, T,) are the forces required to deform the elastic material alone, and (77, 773)
are due to tensions in the cords. Since the force system is specified with respect to the
principal directions of strain, §, and S, arise entirely from the tensions in the cords. 77, T,
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are given by the expressions found by Adkins & Rivlin (1952) in considering large deforma-
tions of thin shells. Thus P17
2077

2 a Iz ) >

T} = 20, h(3—13) (%j—l—)t%%?—:).\

Let us assume that the cords making an initial angle +a with the x-axis are spaced

a distance d; apart before deformation and that each cord carries a tension 7, when the sheet

is deformed, the corresponding quantities for the other set of cords being denoted by d,,

7, respectively. Lines in the x and y directions are intersected initially by sina/d,, cosa/d,

cords of the first set per unit length respectively, these quantities being changed to

sina/(A,d,), cosa/(A,d,)

T — 20, (13— 1) (M+/I
728
(26)

9\ TTz
__>Sz
i
i
T
0 ™%
Ficure 1

in the final configuration. Applying similar considerations to the second set of cords, and
remembering the relations (2-2) for the angle £ at which cords are inclined to the x-axis
after deformation, we have by a simple resolution of forces

17 = (A4/Ay) (01 +0y) cos?a,

Ty = (/A;) (01 +05) sin’a, (2-7)
S, =8, =1(0,—0,)sin20 = S,
where (01, 03) = (11/d,, 75/dy).
Combining (2-5), (2:6) and (2-7) we have, finally,
T, — 20, h(2—22) (%?-’Hg‘%’—/) 3 (0,40,) cos?a,
W oy A, (2:8)
T, = 20, h(A3—13) (a—zl “%W;) 01+ ) sina,

3. THE CASE OF SIMPLE EXTENSION .

When the deformation is produced by means of a tensile force 77 applied in the direction
of the x-axis, 7, = § = 0 and equations (2-7) and (2-8) then yield

h oW oW
7= 0y =~ (G —13) (0_11 +A§0—12)cosec2a —0¢ (say), (3:1)

and
T — 2;/11{[(1 —cot?a) + (A cot?a—AD] DY £ [(A3— 12 cot? @) + (M cotza—/lg)]‘?k’f}.
% 18 18
(3-2)
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206 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC
From (3-1) we see that,since dW/d1, 4+ 139 W |3 L, must be positive from physical considerations,
o is positive if —2A3<0. (3-3)

Also, from (2-3) and (2-4) we may obtain
Bz — (A§—1) {cos?a—1/(A3—A,+1)}{cos?a—1/(AZ+A,+1)}
3 Asin? q(1 —A3cos2 a) '
Now, since we have assumed a state of simple extension A, >1. Also, from (2-3), since
Aysine is real, 1 —Afcos?a must be positive and hence, since A, >1, cos?a—1/(A}—A;+1)
must be negative. The sign of ¢ will therefore be that of cos?a—1/(A3+1,+1). Hence,
remembering (2-3), it follows that provided « is taken as lying between 0 and =, ¢ is
positive if cos™! (1/1;) <a<cos~! (A3-++1;+1)~* and negative if cos~! (AZ+1, + 1) <a<im.
Thus, for any given value of «, there is a critical value of the extension ratio A,, above which
the tension in the cords becomes positive, and below which it is negative. This critical value
of A, increases as « is increased.

(3-4)

THE FLEXURE OF A CUBOID CONTAINING INEXTENSIBLE CORDS

4. GEOMETRICAL CONSIDERATIONS

The simple flexure of a cuboid of isotropic incompressible material has been considered
by Rivlin (1949 a, b). In this part of the paper we shall extend the theory to include the case
where the cuboid contains a layer of thin inextensible cords and a homogeneous deformation
is superposed on the simple flexure, the principal axes of this deformation being unsym-
metrically placed with respect to the axis of flexure.

We assume the undeformed elastic body to be a cuboid bounded in the rectangular
Cartesian co-ordinate system (x,y,z) by the planes x =a,, ¥ = a,, y =4b, z=+¢, and
reinforced by means of a layer of thin inextensible cords lying in the plane ¥ = . This layer
consists of two sets of parallel straight cords which make angles 4« with the z’-axis of
a second rectangular Cartesian co-ordinate system (x',7’,z') related to the system (x,y,z)
by the scheme

x Yy oz
X 1 0 0

‘ 4-1
v o I m (41)

zZ 0 —m I

The origin and x’-axis of the system (x',7’, z’) thus coincide with the origin and x-axis of the
system (x,y,z) and the y'-axis of the former system makes an angle ¢ with the y-axis of the
latter, measured anticlockwise, where (I,m) = (cos @,sin¢). The cords making an angle
+a with the z’-axis are spaced a distance d; apart initially, and each carries a tension 7,
when the body is deformed. Quantities d,, 7, are similarly defined for the other set of cords,
and we write (7,/d,,7,/d,) = (¢}, 0,) to conform with the notation of §2.

We may regard the resultant deformation to which the cuboid is subjected to have been
produced in two stages as follows: ’ :

(i) a pure homogeneous strain with principal extension ratios (4;,4,,43) in the directions
(*9',2');

(ii) a simple flexure, symmetrical with respect to the x-axis, in which each plane normal
to the x-axis becomes in the deformed state, part of a curved surface of a cylinder having the
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z-axis as axis, and in which planes which were normal to the y-axis after the pure homo-
geneous deformation (i) become planes containing the z-axis. During this flexure, elements
of length lying in the layer of cords remain unchanged.
In the deformation (i), a point initially at (x’,%’,2’) in the (x',%’,z’) system moves to
(&',n',{’) in the same co-ordinate system where
€750 = (Lx's 49, 432). (4:2)
If the initial and final co-ordinates of this point in the (x,y,z) co-ordinate system are
(%,y,2) and (£",9",{") respectively, we may transform (4-2) by means of (4-1) to obtain
(€17 0) = (un Kyy + L2, Iy + K, 2), (43)
where K, = PAh+m2h5, K, =m?A,+1%3, L =Im(l,—A;). (4-4)
From (4-4) and (2-4) we have the relations
Ky +K, =4+, K K,—L*=1/A,, (4-5)
K3+ L% = PA3+m2A3, Ki+ L% =m2A3+ 123,

which will be used subsequently. Since the cords are inextensible, from (2-3) we have
A}sin?a+-A}cos?a = 1, (4-6)
sothat Ki+L2=1 if ¢=+(}7—a) and Ki+L2=1 if ¢=+a.

For the simple flexure defined by (ii) we may employ the results obtained by Rivlin
(1949 a, §2) for incompressible materials and write

(&n,8) = {(248"+ B)* cos (1"/4), (24¢"+ B)?sin (1"/4), "}, (4:7)

where (§,7,{) are the final co-ordinates of the point (x,y,z) in the co-ordinate system
(%,9,z), and 4 and B are constants. If, therefore, we choose a cylindrical polar co-ordinate

system (7,0, z) so that x=rcosl, y=rsind, (4-8)

and consider that as a result of the combined deformations (i) and (ii) the point (r, 6, z)
is displaced to (p, 9, {), where

we have, from (4-3) and (4-7),
p= (240 x+B), 9= (Ky+L)/4, {=Ly+K,z. (4-9)

Let the planes x = ay, ¥ = 4,, x = a, in the undeformed body become parts of cylinders
of radii 7y,7;,7, in the final configuration. Without loss of generality we may assume
a,>ay>a,>0 and r,>7,>7,>0. Since elements of length in the layer of cords are un-
changed in length by the simple flexure, we have ds” = r,d# and then from (4-3) and (4-9)
A = r,. The relations (4-9) then yield

B = fo(’fo— 241 a), p = {ro[ro+24,(x—ay) 1},
1} =ro{ro+24,(g,—ap)} (i=1,2).
Remembering (2-4), (4-4), (4-6) and (4-8), it follows from (4-9) that the deformation may

be specified completely by the radius of flexure 7, of the layer of cords and any one of the
principal extension ratios 4, 1,, A5 in this layer.

E=pcosd, 75 =psind,

(4-10)
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5. THE STRESS-STRAIN RELATIONS AND EQUATIONS OF EQUILIBRIUM
Formulae in cylindrical polar co-ordinates for large elastic deformations of isotropic
incompressible materials have been given by Rivlin (19494, §2). Thus if (7,6, 2), (p, 9, )
are the initial and final co-ordinates respectively of any point of the elastic body in the
cylindrical polar co-ordinate system (r, 6, z), and quantities a,(z,j = 1,2, 3) are defined by
Prs Pol?s P2
G = | PO POolts  PI. (5:1)
Cr  Golrs &

the incompressibility condition takes the form

deta,; =1, (5-2)
and the strain invariants /; and /, are given by
I = a;a;, I,=A4;4,; (5°3)

where we have used the summation convention for repeated suffixes, and 4;; denotes the
minor of ¢; in det a;;. The stress components can now be written

ow ow
2{asay 57 T —Audip 140, (5-4)
where p is an arbitrary hydrostatic pressure, J; is the Kronecker delta and the stress com-

ponents (¢, , ..., t,5) are denoted by (¢, ..., ;) respectively.
Introducmg ( 4-9), with 4 = r,, into these relations and making use of (4-8) and (4-5),

we obtain

j—

tj

N

(70/]‘1/10) Cos ‘93 — (7'0/]-1/,0) sin l9, 0 _
a; = | (pKyfro)sind, (pK /o) cost, pLlry ],
Lsind, Lcosf, K,
pecostf(rgdy),  —psind/(ryd,), 0
Ay; = | (oA, Kyfp)sind, (o, Ky/p) cosb, —ryd Lip ],
—A, Lsind, —A;Lcos?, KA,

(55)

I = ”0”‘1+” (1203 + m2A3) +m2A3+ 223,
p .
- . . (56)
L= r2/12+ <A2+/12)+/12+/12’
_ 330w ,/32_3_“5}
and tpp_" 2{7 6—11_7'%/12 FJ +lb>
oW 13 (2 m*\ W
oL (/12+/12) oL }“”
P17 m2 12\ oW
by = 2{(m2/12+12/12) o (/12+/12) T }+p,
pow rollg_uf}
p 0L )’

P2 112y2 2)2
thz{r%(u Fm22)

e (5‘7)

by, = 2Im(A3— /12){ =

by, = =0
¢ = lod ’
the incompressibility condition (5-2) being satisfied by virtue of (4-5).
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Since I, and I, are functions of p alone, the stress components are independent of & and {,
and in the absence of body forces, the equations of equilibrium reduce to

d¢ t,,—t

—ppy Tpp 7Y 5-8
the remaining equations being satisfied identically. Introducing the expressions (5-7) into
(5-8), we obtain by integration

220w aw
p =28~ 5 W+, (59)

where « is an arbitrary constant, and we have employed (5-6) in the evaluation of the
integral terms. The first three formulae of (5-7) now reduce to

d
Ly = WOt o= oW+ g =FQ AWt (510
B[ B 10w
where Flp) =2{[m2/l§+12/1§— 0 2] A2 -5 777;} (511)

and equations (5-6) have again been used to s1mp11fy the expression for #y,.

6. THE SURFACE TRACTIONS

The components of surface traction X; acting at any point of the deformed surface are
iven by the relations ,
g y =2, (61)

where X, X,, X; act in the directions of 7, 0, z respectively and are measured pef unit area
of deformed surface, /; are the direction cosines of the outward drawn normal at the point of
the deformed surface under consideration, referred to this co-ordinate system, and #; are
the values of the stress components defined by equations'(5-4) at that point.

We shall consider the elastic material to be divided into two separate parts by the layer of
cords, which may be regarded as a continuous thin sheet if the cords are sufficiently close
together. We denote by R, and /I, the radial components of the surface tractions acting in
the outward directions over the surfaces p = r,, p = r, respectively on the elastic material
contained between them; R,, IT, are similarly defined for the surfaces p =1, p =7,
respectively of the remainder of the material. These forces are all measured per unit area
of deformed surface. The tangential components of surface traction on the cylindrical
boundaries are evidently zero, since at each point we have (I},/,1;) = (&1, 0,0), and
from (5:7) ¢,5 = t;, = 0. From (5:10) and (6-1) we have for the radial components

Ry = W(r)+ky, 1L = Wi(ry) ‘|"<1:}
Ry = W(ry) +ky 1T, = W(ry) + ks,
the constant « in (5-10) being given the different values x, and «, in the outer and inner parts

of the elastic material respectively. From (6:2), the resultant force P acting radially out-
wards on the layer of cords is given by

P=IL—IT, = R, —R,— W(r) + W(r,), (6:3)

and is evidently zero if k; = k.

(6-2)

27 Vor. 248. A.
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210 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

From (4-9) we may obtain, by a straightforward calculation, the direction cosines at
points of the surfaces of the deformed body which were originally on the planes y = +¥,
z = +¢. The surface tractions at these points may then be found by combining (5-7) and
(5:10) with (6-1), provided « is given the appropriate values «, for r,>p>r, and «, for
ro=p=>71, This calculation is omitted since the resulting expressions are complicated in
form and are not required subsequently.

7. THE TENSIONS IN THE CORDS

The deformation described by (4:3) subjects the layer of cords to a pure homogeneous
strain of the type considered in §2, and the forces appropriate to this deformation may be
calculated by formulae analogous to (2-7). After flexure, the deformed layer of cords forms
part of a cylindrical surface in which, owing to the tensions in the cords, we may define
stress resultants as follows:

T, and S are the forces per unit length, measured in the deformed state, acting in the
longitudinal and azimuthal directions respectively on an element of length in the sheet
which lies in the azimuthal direction;

=y

Ficure 2

T, and § are the forces per unit length, measured in the deformed state, acting in the
azimuthal and longitudinal directions respectively on an element of length which lies in the
longitudinal direction. The equality in the values of S can readily be demonstrated.

The principal directions of strain in the layer of cords are, from §4, obtained from the
directions of 7}, T, and S by rotation through an angle ¢ measured anticlockwise. Thus, if
the stress resultants in these principal directions corresponding to 7}, 7; and § are denoted
by Tj, T,, and §’ respectively, we have, by the usual formulae for rotation of axes (see, for
example, Love 1952, §49), and remembering the sense in which 7}, 7; are defined

T, = 22T, +m2 T+ 2imS$’,
T, = m2 T} +2T}—2ImS’, (7-1)
S = —Im(T|— T} +(2—m?) S,

The orientation of the quantities defined for the layer of cords is illustrated in figure 2, the
broken lines indicating the directions of the cords; the positive direction of the x-axis is
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considered to be outward from the paper and normal to it. 77, T and §’ are therefore given
by the formulae (2-7) for 77, T, and S respectively, provided 4, is replaced by A5 and ¢,

0, are interchanged. Thus
Ty = (A3/Ay) (0,4 0) cos®a,

Ty = (A/As) (0, +0) sin*a, (7-2)

§ =—3(0,—0,) sin 2a,
and introducing these relations into (7-1) we obtain

T, = L {(A3lcosa—A,msina)? oy + (Asl cosa+Aymsina)? a,},

T, = M {(Asmcosa+A,lsina)2 o, + (A;mcos a— A, lsin )2 7},

7-3
S = {4, Im(AZsin? @ — A} cos?a) — (12 —m?) sin 20} 0, (7:5)
+{A; Im(A3 sin? a — A3 cos® &) + (12— m?) sin 24} 7.
For radial equilibrium of the layer of cords we must have
1, = Pr,, (7-4)

where P is given by (6-3). Combining (6-3) and (7-3) with (7-4) we thus obtain

L{(A3mcosa+2A,lsina)? o, + (A3mcosa— A, lsina)2 oy}

= 1{R,—Ry—=W(r)) + W(ry)}.  (7°5)

It has been seen from §4 that when the dimensions of the cuboid and the angle ¢ which
specifies the orientation of the cords are given, the deformation is completely determined
by any one of the principal extension ratios 4;, A,, A; together with the radius of curvature
which any given x-plane in the cuboid assumes during flexure. For convenience we may
choose 15 and 7, to determine the deformation. If the surface tractions R;, R, are given on
the cylindrical boundaries of the deformed body, «; and «, are given by (6:2), and then the
stresses and the surface tractions on the remaining boundaries may be evaluated from (5-7),
(5:10) and (6:1). Also, remembering the definition (e, 5,) = (1,/d),7,/d;), we see that
a knowledge of the four quantities A, 7,, R,, R, is sufficient to determine, by means of (7-5),
one relation between the tensions 7,, 7, in the individual cords. A further relation may be
obtained from (7-3) by assigning a given value to 7; or S. If ¢, = 0, = 0, the tensions in the

cords are completely determined by (7-5). We have
T _ T{R =Ry —W(ry) + W (ry)}

= 7T o3 Psin2a+ Amicosa} ’

(7-6)

and the formulae (7-3) then yield

rr AZm2sin2 a4 A2[2 cos2a
T = it it U= By W(r) + W (),

Ty = 1o{Ry — Ry — W(r,) + W(r,)}, (7-7)

Imry(A3sin% ¢ — A% cos?a : ,
§= 2 loz(siiﬂ PRV m32 cos2 ac) {Ri—Ry—W(r) + W(r,)}

29-2
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If R, = R, = 0 and the cords are unstressed, we have from (7-6)
W(r) = W(rp),
which is true if | - L) = L(ry), IL(r) = L(ry),
and this, with (5-6), yields

i Pm 1
e
17 bt (7:8)

Unless ¢ = 0 or 4, this condition can only be satisfied if 1, = A3 = 1, i.e. if the layer of cords
is unstretched in the deformed cuboid. We then have A, = 1 and 73 = 7, 7,.

8. THE SYMMETRICAL CASE

When the cords are symmetrically placed with respect to the axis of flexure, so that ¢ =0
the results assume a much simpler form. Thus, remembering (4-4), we may put

[=1, m=0, K,=2,, K,=4, L=0, (8-1)
in the formulae of §§ 4 to 7. In particular, from (4-9) we have
p= (2rix+B)Y, &= doylry, (=2, (8-2)

and from (7-1), (13, T,,S) = (77, T4,S5"), the latter quantities being given by (7-2). These
relations when combined with (7-4) yield

0+ 0y = A37y P/(A, 5102 cx),l (8:3)
T, = (13139 rocot®aP
where P is again given by (6-3).

From (8:2), planes normal to the y-axis in the unstrained body become, in the deformed
state, planes containing the z-axis, and the planes z = constant in the unstrained body
remain normal to the z-axis after deformation. The direction cosines /; defined in §6 therefore
take the values (0, 41, 0), (0,0, 41) respectively on these surfaces. Also, since from (5-7)
and (8:1), ty, = t,,= 1,5 = 0, the tangential components of the surface tractions are now
zero on these planes. Denoting the normal components measured per unit area of deformed
surface by ®, Z at points on the planes ¢ = constant, { = constant respectively in the

deformed body, we have, from (6-1) and (5-10),
. .
0= EE{PW(P)}‘FK: (84)

Z = G(p)+ W(p) +x, (8:5)

where, from (5-11), N
(0 212\ [OW  0220W
Glp) = [E(P)Li-1,m=0, = 2(’%"%) (_~ - 2—*)’

and in (8-4) and (8-5) « must be given the value appropriate to the section of the surface
under consideration. Thus, from (6-2),

k =k, = R,—W(r,) when rl>p>ro,}
and - k=ky=Ry,—W(r,) when ry=p>=r,.

oL T (8:6)

(8:7)
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If 2¢ is the angle subtended at the z-axis by the deformed cuboid we have, from (8-2),
¥ = A,b/r,, and from (8-3), (8-5), (8:7) and (6-3), the resultant normal force F; acting on
either of the faces which were initially at z = +¢ is then given by

Fy=2lroyT; + | Zyodp)
= /172; {2f:p[G(p) +W(p)] dp+Pr§[2i1écot2a— l:l
RPN AR WA (5-9)

Similarly, from (7-4), (6:3), (8-4) and (8-7), we may calculate the resultant normal force
F, on each of the surfaces initially at y = + 5. Thus

F,— 2A3c:7"2+ f:‘(adp} — 20,¢(R,r,— Ryr,). (8-9)

If R, = R, = 0, F,is zero and the forces acting on these surfaces are statically equivalent
to a couple M given by

M=2/130{Tzro—l—fh®pdp}=/130f (0 ——ro)——dp (8-10)

If R, = R, = 0, and in addition ¢, = — 0, = ¢, we have, from (7-3), (7-4) and (8-1),

T,=T,=0, S=—0¢sin2, P =0. (8:11)
Then from (6-3) W(r) = W(r,) =W, (say), (8-12)
and equations (8-8) and (8-10) yield
b ([
F, - ~,%—{2 [ ol660) + W) 1a0—3-13) wi), v\
(8-13)
;AW
Also, the conditions (8-12) are true if
L(r) = L(ry), L(r) = Ly(ry), (8:14)
and from (5-6) and (8-1) we then have
ro = (Aar17a/A1)}, (815)

which, with (2-4), (4-6) and (4-10), yields a relationship between 7, and ;.

9. THE SIMPLE EXTENSION AND FLEXURE OF A THIN SHEET

By allowing the x-dimension of the cuboid of §8 to become small compared with the
radius of flexure, we may examine, by a limiting process, the bending of a thin reinforced
sheet containing cords symmetrically placed with respect to the axis of flexure. Thus, if
we write

= a—a, 6=1—1, (i=12), (9-1)
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214 J. E. ADKINS AND R. S. RIVLIN ON LARGE ELASTIC

where 7;,¢; are small compared with 7,, the undeformed body becomes a sheet of thickness
71—17, bounded in a yz-plane by the lines y = +b, z = 4-¢. We shall restrict our attention
to the case where the major surfaces of the sheet are free from applied forces so that
R, = R, = 0, and then from (8-9), F, = 0. Also, we shall suppose S = 0, so that from (7-2)
we may put ¢, = 0, = 0. An approxunate expression for the flexural couple M may now be
obtained by expanding (8-10) as a power series in ¢;, ¢,, and observing that for any function
Sp), if p = ry+¢,, we have

10y dp = [ firge) de

= (e1—6)f(r0) +3(e} —€B) S (ro) +§(ed —d) /" (ro) + ... (9-2)
This process yields

M =2 c{ro [dw] %+ ([ddp o r.,+2 I:de p=r.,)+"'}' (9-3)

Also from (4-10) and (9-1) we have

__/11_771' Ay Mgf ) .
- ( St ) (9-4)

and from (5-6) with/=1,m =0
df,_ 1dh, _ _2(1@%_87‘_%)
dp A3dp A
Introducing these expressions into (9-3) we obtain

4/11 73—

(z—23) I ’72DW+

M= 2xllcr0{

’72[2/I2DW+(/12 /12)2D2W]+0( )}
(77:' —’o), (9'6)

where D=0/, +130/01, and the derivatives of W with respect to I, and I, are evaluated at
p =1, (or y = 0). By similar procedure we may obtain from (8-3) and (8-8) expressions for
o and F; which agree, to a first approximation, with the results obtained for simple
extension in §3.

From (9-6) it is evident that the couple required to maintain a given state of flexure
depends upon the form of strain-energy function for the elastic material of the sheet, in
addition to the disposition of the cords. For rubber-like materials dW/dl, and dW/d1, are
positive, and the work of Rivlin & Saunders (1951) suggests that for a natural rubber
vulcanizate these quantities are much larger numerically than the higher order derivatives
of W with respect to the invariants. In this case, since

d/dp = (dL,/dp) D= (dL,/dp) (9/0L, +130/0L,),

it follows that the terms involving these higher order derivatives can only become important
in any term of the expansion if 1, is large. Since A is restricted by the relation (4-6) to be
appreciably less than sec?a, we shall suppose that it is sufficiently small for these higher-
order terms not to assume overriding importance.
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If the cords lie in a plane midway between the two major surfaces of the undeformed
sheet we may put 7, = —#, = 5,1n (9-6). Ifr, is sufficiently large, the value of M is approxi-
mately equal to that of the second term in this expansion, and we then have

M= 16’1‘“70{2/12DW+ (3—2)2 D2}, (9-7)

To this order of approximation the couple required to produce flexure is directly pro-
portional to the curvature of the deformed sheet. If7,is not large compared with 7, higher
order terms may become important in the expansion for M, and the exact expression (8-10)
must then be employed.

If the layer of cords does not lie exactly midway between the major surfaces of the
undeformed sheet, 7, 47,70, and for sufficiently large values of 7, the flexural couple is
given by the first term of the expansion (9-6). Since this term is independent of the curvature
of the deformed sheet we may infer that the sheet will bend under the application of a simple
tensile force unless a suitable couple is also applied with its axis parallel to the direction of
the force, the magnitude and direction of this couple depending upon the magnitude of the
force and the disposition of the cords. The sign of the first term in the expansion (9-6) for M
indicates the sense in which this couple must be applied. This is dependent upon the signs
of the factors 7, 47, and 13— A2, since DW and 5, —7, are both positive. By analysis similar
to that of §3 it may be shown that A3—A} is positive if 37>a>cos™! (A3+2A5-+1)"* and
negative if cos™! (3 +A;+1)"¥>a>cos~1(1/1;). Also, as in § 3, the sign of ¢ is opposite to
that of 13—2}. We thus have

M>0, o<0 if p+7,>0 and Ir>a>cos~!(B+A;+1)7F
M>0, 0>0 if p+7,<0 and cos™!(A3+A;+1)"F>a>cos1(1/4,),
M<0, ¢>0 if 5,+9,>0 and cos7!(B+A;+1)" ¥ >a>cos™1(1/4,),
M<0, o<0 if p,+7,<0 and Jr>a>cos™!(AZ+A;+1)2

(9-8)

Hitherto we have assumed that r,>7,>7,>0, a;>ay>a,>0, so that, from (9-1), if
71+17,>0 the plane containing the cords in the undeformed sheet lies nearer to the major
surface which becomes concave after flexure; similarly, if 7, +7,<0 the cords lie nearer to
the opposite boundary surface. Moreover, from (9-7) the expression for the couple required
to produce this flexure is positive when the cords lie midway between the major surfaces of
the sheet. If, therefore, the first term of (9-6) is positive, a positive couple must be applied
to prevent bending, and on removal of this couple, flexure would occur in a sense opposite
to that previously assumed. Hence the application of a simple tensile force alone will
produce flexure in such a sense that the major surface of the undeformed sheet which lies
nearer to the plane of the cords becomes concave after deformation if

cos™! (AB+23+1) " >a>cos™1 (1/,),
and convex if n>a>cos™! (A3+2;+1)2.

If cos™ (5 +A5-+1)"¥>a>cos™! (1//3) the first term of the expansion (9-6) changes sign
as the extension ratio is increased from unity to its final value 13, and we may then expect
that if the extending force is applied slowly, the direction of flexure will reverse during
deformation.
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If M becomes zero for a sufficiently large value of 7,, the radius of flexure of the layer of
cords in the deformed sheet may be obtained from the first and second terms of (9-6). Thus
we have, approximately, M = 0 if

(@Rt n3) 2R DW A (B — A7) D2W)

’ 3(m+n,) (B—A3) DW '
This yields a large value of 7, if (y?+75,7,+73)/(7,+7,) is large compared with 7, and 7,,
i.e. if the denominator of this fraction is small compared with the numerator. The plane of
the cords then lies near to the middle plane of the undeformed sheet.

If the elastic material has the Mooney form of strain-energy function so that

(9-9)

W= Ci(L,—3)+Cy(L—3), (9-10)
where C; and C, are constants, the expression (9-9) for the radius of flexure reduces to
_ _ 84t niny+13) (9-11)

Ty = — .
O 347 (1 +72)

SIMULTANEQOUS EXTENSION, INFLATION AND TORSION OF
A REINFORCED CYLINDRICAL TUBE

10. PRELIMINARY RELATIONS

The methods of the preceding sections may be employed to examine the simultaneous
extension, inflation and torsion of a cylindrical tube of isotropic incompressible material
which is reinforced by means of layers of inextensible cords lying in cylindrical surfaces
co-axial with its curved boundaries. It will first be convenient, however, to quote the corre-
sponding results for an unreinforced tube, obtained by Rivlin (1949 ), in a form suitable for
subsequent applications. f

We assume the undeformed tube to be bounded in the cylindrical polar co-ordinate
system (r,0,z) by the surfaces r = a;, 7 = a, (a,>a,), z =41, and suppose the resultant
deformation to be produced by three successive deformations as follows:

(i) a uniform simple extension of ratio 4;

(i) a uniform inflation in which the length of the tube remains constant and its external
and internal radii change to x,a, and y,a, respectively;

(iif) a uniform simple torsion in which the angle of twist is § per unit length of the extended
tube. A point initially at (r,0,z) is therefore displaced by the resultant deformation to

(pa'&a Qs where (p, 79', §) = (,ur,ﬁ—l—;Mz, /12), (10'1)

4 being a function of r which assumes the values g, #, on the outer and inner surfaces of the

tube respectively.

The formulae (5-1) to (5:4) and (5-8) again apply. Thus using (10-1), the incompressibility
condition becomes K = 4p>—1% = (A2 —1), (10-2)
where K is an arbitrary constant. The strain invariants are given by

1
Il = A2 +/‘2+,1_2ﬂ_2 + %2/1%“272’
L (10-3)
L = ﬁ‘f‘/‘; + %P+,
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and the stress components may be obtained from (5-4) and (5-8) in the forms
. r
bop=— S(r)dr+«,

typ = — | 1) dr—defr) +x,

r 10-4
tg =~ S dr+g(r) 15 1o
ow 10w
lyg = 2¢”{'{2'u717 +/7 71;},
tgp = tp‘a? = O,
= _i___ 2 21242 HLV_ 2 2__1_ M 2
where  f(r) = 2{[ g Ly |G — (Var— ) G | [, s

gl = 2| (- /1—21;2) %%’ o+ (A2t =) %%/}

and « is a constant of integration.

The surface tractions may be obtained by combining the expressions (10-4) for the stress
components with (6-1), and making use of (10-1) to determine /;. It is readily seen that the
tangential components are zero on the curved surfaces initially at 7 = a,, 7 = a,, and if we
denote the radial components directed outwards, and measured per unit area of deformed
surface, by R,, R, respectively, we have, since (I}, /5, [5) = (41, 0, 0) on these surfaces,

k=R, =R,+ [ fir) dr. (10-6)

Similarly, if (R,, ®,, Z ) are the components of surface traction in the radial, azimuthal and
longitudinal directions respectively acting on the plane ends initially at z = 4-/, and again
measured per unit area of deformed surface, we have, from (10-4), (10-1) and (6-1),

ow 10w
AR el
Z,=— | fir) dr+g(r) +.

R =0, O — 2;#/17{/1,u
( 10'7)

The resultant couple M and longitudinal force F on the plane ends of the tube are now

given by , Lo
_ 101 9 _ a 3 oW 10w .
M =2n MM@,,P dp = 4ny Lz,ur (/I,u I, + TRIA ) dr, (10-8)
and N=2n :z pdp
_ 7T a 2 2 ) )
= 5[ t2ret) + (P —ap) S dr+ (e R (109)

= [ e+ =) s dr+ (a3 By,

J

28 VoL. 248. A.
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if we make use of (10-1), (10-2) and (10-6), and employ the relation

f :r?f(r) dr = a3 :f(r) dr—2f:r{ ; S dr} dr

to simplify the formulae for M.

11. THE RELATIONS FOR A LAYER OF CORDS

We now consider the tube of the preceding section to be reinforced with a layer of thin
inextensible cords, the path of each cord in the undeformed cylinder being a member of the
family of similar circular helices

r=>5, z=~bfcota+constant (a;=b>a,), (11-1)
where b is a constant. Each helix therefore cuts the generators of the cylinder 7 = 4 in the
undeformed tube at a constant angle a, and we shall suppose that when the tube undergoes
the deformation described by (10-1) the cords make an angle § with the longitudinal
direction. Also, we assume that before deformation the cords are spaced a distance d apart,
this distance being measured along a path orthogonal to the helices (11-1), and that after
deformation each cord carries a tension 7.

The restriction upon the deformation (10-1) imposed by the inextensible cords is readily
obtained from geometrical considerations. Thus, if ds is an element of length lying along
a path taken by one of the cords we have before deformation

dscosa = dz, dssina = bd0,
and after deformation
dscosf=d{=Adz, dssinf = pu,bdd = u,b(d0+yAdz),
where g, is the value of x4 for r = . Combining these relations we obtain
cosf = Acosa, sinf = u,(sina+yAbcosa), (11-2)
s 1—2%cos?a
# = (sina+ yAb cos )2’
and from (10-2) and (11-3) we now have
A(1—22%cos?a)
K= bz{(sirfoc—l—;ﬁ/lb cosa)? 1}

The layer of cords thus reduces by unity the number of degrees of freedom available to
the deformation (10-1). Three such layers would yield three relationships of the form (11-4)
between the constants A, ¥ and K which are employed to specify this deformation and, in
principle, it would then be possible to determine explicitly the values of these constants. In
this case a continuously varying deformation of the type (10-1) would not, in general, be
possible, and we shall therefore, in subsequent work, restrict attention to tubes in which
there are not more than two reinforcing sets of cords.

If the angle of the helices is unchanged by the deformation, so that ¢ = f, equations (11-2)

yield A=1, p,=1/(1+¢bcota). (11-5)
Stress resultants 77, 75, S in the deformed layer of cords may be defined exactly as in § 7.

If g, n, denote respectively the number of cords which are intersected by unit length of a line
oflatitude and a generator in the deformed layer, we have, from geometrical considerations,

ny = cosa/(u,d), ny=ngtanp.

(11-3)

(11-4)
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Remembering (11-2), we obtain, by a simple resolution of forces
T, = Acos?ao/u,,
T, = p, (sina+yAbcos )20/, (11-6)
S = cosa(sina+yAbcosa) 0.

12. SIMULTANEOUS EXTENSION, INFLATION AND TORSION OF A TUBE
REINFORCED WITH A SINGLE SET OF CORDS

When the tube is reinforced by a single set of cords as described in the previous section,
we may follow the procedure of § 6 and consider the elastic material to be divided into two
separate parts by this layer, the difference in surface tractions on the neighbouring surfaces
of these two parts being balanced by the tensions in the cords. We therefore denote by 17,
I1, the normal components of the surface traction on the surfaces of the outer and inner
parts of the elastic material adjacent to the layer of cords which is initially at r = 4, these
components being directed outwards from the elastic material on which they act and
measured per unit area of deformed surface. From (6-1), (10-1) and (10-4) it follows that
the tangential components on these surfaces are zero.

Application of (10-6) to the outer and inner cylinders of elastic material yields

=R = I+ [ fdr,
oo (12:1)

and ky = II, = R,+ f :if(r) dr,

respectively, where k,, «, are the appropriate values of « for the parts of the material under

consideration.

The stresses in the elastic material and the surface tractions on the plane ends may now
be obtained from (10-4) and (10-7) respectively by writing «, for « if ,>r>b and «,, b for
Kk, a, if b>7r>a,, k, and «, being given by (12-1). The resultant pressure acting radially
outwards on the layer of cords is given by

P=1II,—I,=R,—R,— | “fir) dr, (12-2)

and this is connected with the stress resultant 7, by the relation
T, = Pu,b. (12-8)
From (11-6), (12-2) and (12-3) we now have

/Ib{Rl —R,— :y(r) dr}

- (sina+yAbcosa)? (12-4)
e A%b cos? “{Rl —R, _J‘azf (r) dr}
L= Uy(sina—+9Ab cos loc) 2 ’
> (12-5)

Ab cos oc{Rl —R,— :f(r) dr}

= sina+yAb cosa

28-2
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The resultant couple M acting on either of the plane ends of the composite tube initially
at z = 4/ may be evaluated by adding to the expression (10-8) for the couple on the elastic
material that due to the layer of cords. Since this latter component is of magnitude
2mp; b2S, employing (11-3) and (12-5), we obtain

@ ow 1w Ab3 cosa(l —A%cos?a) @
== 3 —_— e U .
M 271‘2;/]@;” (/Lu a1, +/1,u a1, )dr (sina+yAbcosa)d [Rl Bt a,f(r) d :'} (12:6)

The resultant longitudinal force on a plane end may be similarly obtained from (10-9)
and (12-5). Thus if V| and N, denote the resultant forces on the plane ends of the cylinders
of elastic material for which a,>7>5 and b>r>a, respectively, we have, from (10-9),

Ny =5{[ " 12re) + (2~ ) A0 dr - (@09 Ry,
. (12:7)
N, = [ [2rg() + 2 =8 S0 drt (b2~ a3) Ry,
and employing (11-3) and (12-5) we obtain
N = Ny + Ny+2mu, T,

= [ "t2rgr) + (2O dr+ Ryt 00— Ro(a ), (12:)
“ 203 cos?«
where X= (sinat gAbeosa)? V (12-9)

If the applied forces R,, R,, M and N are given, (12-6) and (12-8) may be regarded as two
equations for the determination of ¥ and A. :
If y = —tan «/(Ab), since g, must remain finite, we have, from (11-2),

f=0, A=seca, Y =—sina/b. (12-10)

The cords then coincide with generators of the cylindrical surface in which they lie in the

deformed tube, which thus attains its maximum extension. Also, for N to remain finite we

have, from (12-8) and (129), @

P=R,—Ry+| f(r)dr=0. (12-11)
az

From (11-6) it is evident that 7, = § = 0 and that ¢ and 7] may have any arbitrary finite
values which satisfy the first of (11-6), and from (12-8) N is also arbitrary to this extent.
These conclusions are obvious from physical considerations.

13. SIMULTANEOUS EXTENSION ,» INFLATION AND TORSION OF A TUBE REINFORCED
WITH TWO SETS OF CORDS

The results of the preceding section may be readily extended to the case where the
cylindrical tube described in § 10 is reinforced with two sets of cords. We suppose the cords
to lie in the cylindrical surfaces r = b, r = ¢ in the undeformed body, where a,>b>c>a,,
and employ the notation of §§ 10 to 12, with the addition of suffixes 4 or ¢ to distinguish
quantities appropriate to either set of cords. The paths of the cords in the undeformed body

may therefore be represented by the two families of helices
r==5b, z=>b0cot oc,,-l—constant,}

(13-1)
r=¢, 2z =l cota,+constant.
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The incompressibility condition (10-2) now yields

K = r2(i2—1) = ai(yd—1) = (3 —1) (132
=024 —1) = A(4f —1),
and corresponding to (11-3) we have
1—22%cos?a 1—22cos?a,
2 b .
# = (sin a,+yYAb cosay)?’ "= (sina, —[—gﬁ/lccos @)% (18:3)
From (13-2) and (13-3) we obtain
2{ A(1—A%cos?a) } 2{ A(1—2A2%cos?a,) 1} (13-4)
(sin a, +YAb cos )2 (sina,+yAccosa,)?

For any given value of A, equation (13-4) may be regarded as a biquadratic for the determi-

nation of ¥, and conversely, if ¢ is known, (13-4) becomes a biquadratic in A. The values of

M, and g, obtained from (13-3) must evidently be positive for a physically real deformation.
Corresponding to the relations (12-1) we now have

b
&y = Ry = II,,+| f(r)dr,

v

Ky = 11, = ch-{-f:f(r) dr, (13-5)

ky =11, = Rz"‘faff(’) dr,

where «}, k,, k3 are the values of x appropriate to the regions a,>r>b, b>r>¢, c>r>a,
respectively, and (I1,,, I1,,), (11, I1,,) are the surface tractions acting on the surfaces of the
elastic material adjacent to the layers of cords at r = b, r = ¢, and are defined in a manner
exactly analogous to the quantities (17, I1,) of §12. These surface tractions are related to
the stress resultants in the layers of cords by relations of the form (12:3). Thus

712b = (Hlb_HZb) ﬂbb, 7;6 = (HIC—HZc) HeC. (13.6)
From (13-5) and (13-6) we may obtain
M, — R— fr) dr—%—b, o, —R,— f(r) dr——— (137)
T T,
and /‘bb+/‘c =R, —R,— alf(r) dr. _ (13-8)

Also since formulae of the type (11:6) apply for each set of cords, we have, from (13-8),

7,(sin 0+ YAb cose)?[b+0,(sina, + ke cosa,)2lc — A{R, — Ry [ *f1r) o, (139)
which corresponds to the relation (12-4). "

The resultant couple M on a plane end of the tube may now be evaluated by combining
the components due to each layer of cords with that arising from the deformation of the
elastic material. Thelatter component is given by (10-8) ; the former components contribute
a couple of magnitude 2m (45 b3S, + 42 ¢2S,) where S, and S, are given by formulae analogous
to the last of (11-6). Thus employing (13-3) we obtain

ow 10w b2 cos (1 —A%cos?a,) o, | c2cosa,(1—A%cos?a,) 0,
M = 2m {wa ( 01 +/l FA } " sin a,+yYAb cosa, s a, ¢ cos a: } '
(18-10)
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The resultant longitudinal force N on a plane end of the tube may be derived by a pro-
cedure similar to that employed in obtaining (12-8). Applying formulae analogous to (10-9)
and (11-6) to each section of the tube, and making use of (13:5) to (13-8) we may obtain the
alternative expressions

= [ t2re) + (2= 1 dr+ (3—e) B+ (@~ ) By

— (82 —¢?) (sina, +yAb cos o) 2 0,/ (Ab) 4 24%(0, b cos? o, + 0, c cos? ) },
= 71 ["12rg(r) + 0281 f -t (3 82) Ry (02— D) R,

+(82—¢?) (sina,+yAccosa,)? 0,/ (Ac) +2A2%(0, b cos® o, + 0, ¢ cos? ) }.

If the applied forces R;, R,, N, and the couple M are known, (13-4), (13-9), (13-10) and
(13-11) furnish four relations for the determination of A, ¥, ¢, and ¢,.

L (13-11)

14. THE SYMMETRICAL CASE
When the two sets of cords form a single layer and are symmetrically disposed with

respect to generators of the cylindrical surface in which they lie, we may put 4 =g,
a, = —a, = ¢ in the results of the precedlng section. Provided a+ 0 or }=, equations (13-2)
to (13-4) then yield

U=0, p}=p>=(1—2A%cos?a)/sin’a,

K = b*{A(1—22%cos?a)[sin?a—1},
b2(1—22cos?a b?
, ( r2sinaq )—I—/I(l_r—?)
and the deformation reduces to combined extension and inflation. The formulae (10-5)
for f(r) and g(r) become

101 =l (3 %)

(14-1)
W02 =

14-2)
B oW AW (
g(’)—2< )2 2)(3]1 +u 3])
and from equations (13-9) to (13-11) we have
0,0, = /Ib:Rl—Rz-— “fr) dr} / sin? ¢, (14:3)
M = 2nb% cota(l —A%cos?a) (0,—0,), (14-4)
— [ t2re(r) + 0+ 108 0T r - (@ 1ol B~ (@ 0ol Refs (1)
respectively, where Xo = 2A3cot?a—1, (14-6)
and we have used (14-3) to simplify the expression for V.
If the deformation is produced by a uniform inflating pressure P, so that R, = — P and
R, = N=M =0, (14-3) to (14-5) yield
¢, =0, — b {P+ “f) dr} / (2sin?a), l
“ “ (14-7)

([ )+ 05 xob001 ) fa+r)|
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Similarly, if the deformation is produced by a tensile force N, we have R;=R,= M=0,
and @
0, =0,=Ab| f(r)dr/(2sin%a),
o (14-8)
N =T ere(n)+ (P + b0 S} dr.

The tensions in the cords are now positive if f(r) dr>0, and from (13-2) and (14-2) w
may write

f(r) = 2b2(14+-A?) (1—Au

)
)(aI 5T

) / ().

If A is positive, the sign of f(r), and hence of f (r) dr, will be that of the factor 1 —AgZ. Also
from (14-1)
1—-2 = (1—-23) {1/(A2+241) —cos?a} cosec?a.

If, therefore, o is taken to lie between 0 and 17, the tensions in the cords are positive if

A>1 and cos™!(1/d) <a<<cos~!(A2+A+1)7%,

or A<l and cos™!(A2HA+1)t<a<im,
and negative if A>1 and cos™! (A24+-A+1)t<a<inm,
or A<l and cos7!(1/d) <a<cos™!(A2+A+41)7%,

the lower limit for « being determined from (14-1) by the consideration that g,, and hence
(1—22cos?a)* must be real. These conditions may be compared with the analogous results
obtained in §§3 and 9.

This work forms part of a programme of research undertaken by the Board of the British
Rubber Producers’ Research Association, and was carried out in the Davy Faraday
Laboratory of the Royal Institution.
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